FORMULA SHEET

a) The solution of the following problem :

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
u(0, t)=u(L, t)=0, \quad \forall t \\
u(x, 0)=f(x) \\
u_{t}(x, 0)=g(x), \forall x \in[0, L]
\end{array}\right.
$$

for a string of length L is

$$
\begin{aligned}
u(x, t) & =\sum_{n \geq 1}\left(B_{n} \cos \left(\lambda_{n} t\right)+B_{n}^{*} \sin \left(\lambda_{n} t\right)\right) \sin \left(\frac{n \pi x}{L}\right), \\
\text { with } \lambda_{n} & =\frac{c n \pi}{L}, \\
B_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x \quad, n=1,2, \ldots \text { and } \\
B_{n}^{*} & =\frac{2}{c n \pi} \int_{0}^{L} g(x) \sin \left(\frac{n \pi x}{L}\right) d x, n=1,2, \ldots
\end{aligned}
$$

b) The solution of the following problem :

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
u(0, t)=u(L, t)=0 \\
u(x, 0)=f(x)
\end{array}\right.
$$

for a thin metal bar of length L is

$$
u(x, t)=\sum_{n \geq 1} B_{n} \sin \left(\frac{n \pi x}{L}\right) e^{-\lambda_{n}^{2} t}
$$

with

$$
\begin{aligned}
\lambda_{n} & =\frac{c n \pi}{L} \\
B_{n} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x, \quad n=1,2, \ldots
\end{aligned}
$$

c) The solution of the following equation : $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ in the following rectangle R

such that $u(x, y)=f(x)$ on the upper side and 0 on the other sides of R, is :

$$
u(x, y)=\sum_{n \geq 1} B_{n} \sin \left(\frac{n \pi x}{a}\right) \sinh \left(\frac{n \pi y}{a}\right),
$$

with $B_{n}=\frac{2}{a \sinh \left(\frac{n \pi b}{a}\right)} \int_{0}^{a} f(x) \sin \left(\frac{n \pi x}{a}\right) d x, \mathrm{n}=1,2, \ldots$
d) The solution of the following problem

$$
\left\{\begin{array}{l}
\frac{\partial^{2} u}{\partial t^{2}}=c^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right) \\
u=0 \text { on the boundary } \\
u(x, y, 0)=f(x, y) \\
u_{t}(x, y, 0)=g(x, y)
\end{array}\right.
$$

considered in the following rectangular membrane :

$$
\text { is } u(x, y, t)=\sum_{m \geq 1} \sum_{n \geq 1}\left(B_{m n} \cos \left(\lambda_{m n} t\right)+B_{m n}^{*} \sin \left(\lambda_{m n} t\right)\right) \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)
$$

with

$$
\begin{aligned}
B_{m n} & =\frac{4}{a b} \int_{0}^{b} \int_{0}^{a} f(x, y) \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) d x d y \\
B_{m n}^{*} & =\frac{4}{a b \lambda_{m n}} \int_{0}^{b} \int_{0}^{a} g(x, y) \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) d x d y \\
\text { and } \lambda_{m n} & =c \pi \sqrt{\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}}, m=1,2, \ldots \text { and } n=1,2, \ldots
\end{aligned}
$$

Laplace transform

a) $L\{1\}=\frac{1}{s}$
b) $L\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, n=1,2,3, \ldots$
c) $L\left\{e^{a t}\right\}=\frac{1}{s-a}$
d) $L\{\sin (k t)\}=\frac{k}{s^{2}+k^{2}}$
e) $L\{\cos (k t)\}=\frac{s}{s^{2}+k^{2}}$
f) $L\{f(t-a) U(t-a)\}=e^{-a s} F(s)$, where $F(s)=L\{f(t)\}$.
g) If $f, f^{\prime}, \ldots, f^{(n-1)}$ are continuous on $[0, \infty)$ and if $f^{(n)}(t)$ is piecewise continuous on $[0, \infty)$, then
$L\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots-f^{(n-1)}(0)$,
where $F(s)=L\{f(t)\}$.

